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An image processing technique for automatically detecting forest fire
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Abstract

In this paper we present an automatic system for early smoke source detection through the real time processing of landscape images. The
first part describes the segmentation technique we use to extract persistent dynamical envelopes of pixels into the images. We describe the
temporal algorithm at the pixel level (filtering) and the spatial analysis to bring together connected pixels into the same envelopes (object
labeling). The second part deals with the method we use to discriminate the various natural phenomena that may cause such envelopes. We
describe the image sequence analysis we developed to discriminate distant smokes from other phenomena, by extracting the transitory and
complex motions into little pre-processed envelopes. We present then our main criterion for smoke recognition based on the analysis of the
smoke plumes velocity.
 2002 Éditions scientifiques et médicales Elsevier SAS. All rights reserved.
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1. Introduction

In most cases, it is difficult to contain a forest fire
beyond 15 minutes following ignition, and rapid detection
is therefore critical. To assist human surveillance, infrared
technology has been proposed to detect forest fire with
thermal infrared cameras [1]. Until now, these methods do
not yield good results for the main reason that the fire itself
is often hidden by the trees at the start of its ignition, and
the smoke plumes are too quickly cooled to be detected
by infrared. More recently, a semi-automatic fire detection
system uses infrared satellite images from the Very High
Resolution Radiometer (AVHRR) [2–4]. Nevertheless, the
satellite permits a detection service at a continental scale,
and only at the moments when it passes over the same
region. We present in this paper a ground-based video
system able to detect fires much more rapidly and which
is immune from cloud obscuration. Our system consists
of a set of remote CCD cameras covering the supervised
zone (Fig. 1) and able to recognize smoke plumes across
the visible spectrum at about 3 frames per seconds. Each
detector ensures autonomously the basic functions of smoke
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detection and data transmission. When fire detection occurs
on a particular remote analyzer, alarm position on a map and
fire images are sent to the control station to obtain quick
visualization and the location of the growing blaze.

The fire detection algorithm that we present requires a
landscape image analysis in two stages; first the tracking of
local dynamical envelopes of pixels, which consist of local
time-varying grey levels of connected pixels, and second
the discrimination between the various natural phenomena
that may cause such envelops. The next section describes
the technique we used to extract the local and persistent
dynamical envelopes from landscape images. In the last
part, we present the identification criteria that we use
to discriminate smoke from various natural phenomena
envelopes.

2. The dynamical envelope pre-processing

The difficulties of segmenting landscape images are due
to their varying nature, to the various illumination conditions
and to the large number of dynamical events that may
appear. In the case of the distant smokes, the sets of
pixels constituting the smoke envelopes are quasi-static and
composed of variegated and fleeting motion, dim contrasts,
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Fig. 1. Automatic forest fire detector system.

Fig. 2. Smoke pixel grey levels for a 4 km distant forest fire.

and changing contours. This prevent any spatial or texture
analysis. To extract the persistent dynamical envelops into
the images, we use a temporal analysis at the pixel level
(filtering) and a spatial analysis to bring together connected
pixels into the same envelopes (object labeling).

2.1. Temporal analysis

2.1.1. Instantaneous dynamical data
The purpose of this treatment is to build a representative

image of the dynamical activity of each pixel. According
to many distant smoke observations, we propose to retain
pixels presenting important dynamical activity but low
frequency variations only (Fig. 2). Actually, because of
spatial resolution effects, close moving objects present
higher pixel grey level variation frequencies than distant
moving objects. The only cases where distant pixels present
important dynamical and high frequencies correspond to
the rapid motions of rigid objects. In the other cases, the

grey level variations of distant pixels result from large-scale
events, like cloud shadows or local luminosity variations,
and present low frequencies variations. This is the case
of distant smoke pixels for which the smoke plumes are
propagating into a same envelope.

At each sampling timet and for each pixelx of the im-
age, we calculate the instantaneous dynamical information
I (x, t), which quantifies the ratio of the slow variations com-
pared with the fastest ones. To avoid calculating a Fourier
transform, which is a high cost calculus, the system uses a
buffer store composed of the lastN images of the scene that
allows operating for each pixel a linear combination of its
last grey levels:

I (x, t) =
∑

i,j=0,N

αij

∣∣l(x, t − i�t) − l(x, t − j�t)
∣∣ (1)

with l(x, t) being the grey level of pixelx at timet , and�t

the sampling time of the images. The choice ofαij and the
numberN of successive images depend on the frequencies
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we want to sample. This choice is limited by the memory
size of the system and by the computing time remaining to
carry out this operation in real time.

The sampling period is fixed by the detector system
at the value�t = 1/3 s. �t is fast enough to quantify
the fast variations of close smokes (500 m for 60-deg
CCD lens), whose puffs cross quickly over pixels. At the
oppositeN�t should be longer enough to quantify the slow
variations of distant smokes, because the puff apparent sizes
are larger and consequently, the crossing time over pixels
is longer. A balance guides to the choice of the optimal
segment durationN�t , to quantify low frequency in the
pixels activity; a higher value ofN�t would have required
an excessive quantity of memory for the system and a
significant increase of the calculation time. A smaller value
would have reduced the detection ability of quantifying the
slow grey level variations of distant smoke. Due to these
conditions and according to the multiple smoke records, we
have chosenN = 16 and�t = 1/3 s.

To quantify the information above the electronic noise,
we suppose that for the given images sampling rate (3 frames
per second), two successive pixel grey levels differences
represent a sample of this electronic noise. We suppose also
that the variations of two grey levels temporally separated
by N sampling time represent, on the contrary, a significant
estimation of the low frequencies variations. As a result, we
defineI (x, t) as the difference between the low frequencies
and the high frequencies estimation as following:

I (x, t)

=
slow variation term︷ ︸︸ ︷∣∣l(x,t)−l(x,t−N�t)

∣∣

− ( ∣∣l(x,t)−l(x,t−dt)
∣∣+∣∣l(x,t−(N−1)�t

)−l(x,t−N�t)
∣∣︸ ︷︷ ︸

noise variation terms

)
(2)

2.1.2. Cumulated dynamical data
We use then the accumulation in time ofI (x, t), that we

call the cumulated dynamical dataIc(x, t) to localize the
areas of persistent dynamical activity, and to obtain stable
pixels envelops. The purpose ofIc(x, t) is to obtain a more
consistent dynamical information, and to connect the pixel
inducing dynamical information in a sufficient time in order
to assure the stability of the spatial envelops. We have to join
pixels covering the same local dynamical event into stable
envelopes.

Actually, a smoke source can generate, during its evolu-
tion, some transitory dynamical data that corresponds to the
consecutives smoke plumes. We use the cumulated data to
extract the smoke pixels and then to obtain stable smoke en-
velopes. As we will see later in Section 2.2.2, the matching
during time of a given envelope depends on the correspon-
dence of its pixels between two successive images.

Ic(x, t) is calculated, for each pixelx and at each
sampling timet , with a mean algorithm and a temporal
weighting as following:

Ic(x, t) = (1− ρ)Ic(x, t − �t) + ρI (x, t) (3)

whereρ = 1/N is the time constant depending on the buffer
store size.

We could use a new buffer store and a sliding algorithm
to calculateIc(x, t), but to save memory and computing
time we prefer the use of the aforementioned method. By
cumulating the instantaneous dynamical dataI (x, t), we
definitely eliminate the pixels affected by the electronic
noise or pixels presenting important variations induced by
rapid or solid motions.

Eqs. (2) and (3) applied to smoke images sequences
allow to obtain the imageIc(x, t) where the intensity is
quantifying the dynamical activity according to the previous
hypothesis (Fig. 3). As a result,Ic(x, t) is used to identify
persistent dynamical local envelopes and directly remove

(a) (b)

Fig. 3. Smoke plumes into a natural landscape image (a) and cumulated dynamical informationIc(x, t) image (b).
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from the analysis too brief events when no dynamical data
is locally re-enforced during time.

2.2. Spatial analysis

2.2.1. Envelops decomposition
Once the dynamical data estimation is made, we have

to segment the images in order to retain only pixels that
constitute the envelopes of dynamical phenomena. We define
the envelopes as the areas of the images where the cumulated
data Ic(x, t) is important. We obtain such envelops by
applying at each sampling time a specific thresholdTc to
Ic(x, t) as following:

Let M be the maximum number of pixels with significant
value ofIc(x, t),M is also the maximum number of pixels
selected into the images. We calculate theIc(x, t) values
histogram to determine the thresholdTc for which at least
M pixels present a cumulated dataIc(x, t) aboveTc. If
this threshold is less than a minimal value admitted,Io,
we chooseTc = Io to remove too noisy data. After this
operation, only pixels with significant dynamical contents
and time stability are selected.

The first remark is that we have to increaseM for the
highest resolution images or images presenting important
dynamical events. Secondly, we apply the same threshold
to the whole image ofIc(x, t). In the presence of important
dynamical activity, the sensibility of the system decreases. In
this case, we can reduce the value ofTc and report later on
the analysis of the supplementary pixels through an off-line
process.

2.2.2. Objects labeling
The object labels must persist to the probably changing

shape of each envelope but also to the weak displacement
of the whole envelope. Fig. 4 illustrates our label affecta-
tion principle applied to two consecutive envelopes which
present the maximum number of common pixels. Neverthe-
less, the segmentation presented here is not enough to per-
form the smoke recognition at only one go. Actually, we ob-
serve that many natural events can generate similar dynami-
cal envelopes (clouds shadow, illumination variations on the
ground relief, . . .). In the next part we present the identifi-

Fig. 4. Label affectation for the temporal following of dynamical envelopes.

cation criteria we use to definitely discriminate smoke en-
velop from the other dynamical events by the analysis of the
spatio-temporal content of each envelope.

3. Smoke pattern analysis

3.1. Decorrelation criteria

We have demonstrated in [5] the non-linear behavior of
the grey levels variations of a single smoke pixel using the
estimation of the fractal dimension [6] combined with the
surrogate data method [7]. More precisely, we observed that
the smoke envelope forms a complex dynamical structure,
which is comparable to a low frequency spatio-temporal
noise [8]. Fig. 5 shows typical grey levels variations of
smoke pixels displayed perpendicularly (Fig. 5(a)) and
along (Fig. 5(b)) to the main orientation of the smoke
plumes propagation. We observe in Fig. 5 typical spatial
decorrelation of the grey levels that corresponds to the
spatial vanishing of the smoke plumes and that depends on
the spatial resolution of observation.

The smoke identification described in the patent [8]
consists in the calculus of several spatial decorrelation
criteria. To quantify such criteria, we calculate, at each
sampling time, the distribution value histogram of the grey
levels differences of all the pairs of pixels contained into
a pre-processed envelop. By cumulating this histogram in
time, we obtain, for all the smoke envelopes analyzed, a
gaussian distribution of the grey levels differences that is
translated into a typical spatio-temporal behavior of smoke
patterns [5].

However, events as fog/haze, clouds but mainly clouds
shadows on changing relief, show a complex dynamical
structure, comparable to the one produces by the smoke.
This is principally due to the similar spatial texture of the
envelops produced by such phenomena. We propose to dis-
criminate those phenomena by analyzing the temporal cor-
relations into each envelops. Fig. 5(b) shows the temporal
signatures that propagate trough pixels with different tem-
poral delays induced by the motions of the smoke plumes
at various propagation speeds. These observations proceed
from a large temporal analysis window. We present in the
following a real time method to identify these features by
analyzing shorter temporal pixels evolution.

3.2. Motion detection with a temporal embedding method

To improve definitively the forest fire detector, we have
proposed to calculate the complex smoke plumes motions
from the previous extracted envelopes. The difficulty in
processing such envelopes is that the motions to detect are
composed of fleeting and not sharply contrasted fronts that
propagate slowly on an already smoke-filled background.
Given the small size of the envelopes to process, the motion
detection methods based on spatial analysis, which are
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Fig. 5. Temporal variations of smoke pixels displayed perpendicularly (a) and along (b) the smoke plumes propagation direction.

Fig. 6. Cluster formation of the correlated signatures into the multidimensional embedding space.

rather adapted to solid motion tracking, are unsuited [9,10].
However, we observe that the motion of a smoke plume
creates the repetition of identical-looking temporal variation
along its propagation trajectory (Fig. 5(b)). We can clearly
observe an average time delay that corresponds to the
average puff propagation speed. To retrieve the trajectory
of a single puff only, we have to track short temporal
variations. These temporal signatures correspond to the
average crossing time (N�t) of the puff over the area
covered by on pixel. The method we propose is to identify

all the correlated temporal signatures in order to reconstruct
the smoke plume trajectories. The number of signatures
to process in a real time analysis for a single envelope is
approximately equal to the product of the envelope area
(some hundred of pixels) with the number of temporal
samples (some tens time steps). It is then current to compare
10 000 points in only one time step. To extract all the
correlated signatures in real time, we propose to perform a
cluster extraction into a multidimensional space, where the
temporal signatures are embedded [11] (Fig. 6).
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(a) (b) (c)

Fig. 7. Space-filling curves examples: (a)z-curve in dim 2, (b) Hilbert curve in dim 2, (c) Hilbert curve in dim 3.

Clustering techniques are most often used for data min-
ing, which is the process of extracting useful information
from very large data sets. Many clustering techniques exist,
such ask-mean algorithm orr-tree techniques [12]. Such
indexations are obviously not general and a recalculation is
necessary for any new configuration of the data. The major-
ity of these techniques are not adapted to real time process,
and mainly not adapted to a dynamical process when the
points are sequentially embedded.

Our real time clustering technique uses the indexing
of the multidimensional embedded points along a space-
filling curve [13], with an original chaining technique of
these points that we detail in [11]. The fractal property
of the space-filling curves (Fig. 7) allows us to consider
that neighbor points in the space are neighbor points, or
consecutives, on the fractal curve. If we disregard the
recovering limitation of the one-dimensional space-filling
indexing [14], finding cluster points in space boils down to
find close consecutive points on the curve. With this method,
we can recuperate the closest signature of any new incoming
signature and then estimate if this signature belongs to an
identified trajectory or not. In the following section, we
detail the three successive stages of our cluster extraction
method: indexing, chaining and cluster identification.

3.2.1. Fractal indexing and chaining
At each sampling time and for each pixel of the envelope,

we embed a multidimensional point formed with the last
N grey level of the pixel. To index each embedded point
we use its curvilinear coordinates on the space-filling curve.
We call the index the fractal rank. To achieve this indexing,
we use the “Z-curve” initially proposed by Orenstein [15]
(Fig. 7(a)) which yields to the fastest fractal rank calculation
through a transposition of the bit coordinates matrix:

z(X) =
e−1∑

j=0

N−1∑

i=0

2i+jdx
j
i (4)

wherex
j
i is thej th bit of thee-bytes grey levelxi = l(x, t −

i�t) of the signatureX.

The next step of the method consists in storing each new
incoming point into a memory table in the upward order of
their fractal rank. By truncating the fractal rank, we classify
all possible ranks within a limited number of classes, thus
not exceeding the standard memory of computers. Each new
point is then chained inside a hypercube, or class, containing
a very small number of already-chained points. This limits
the number of rank comparisons to be carried out, and
therefore the computing time.

This chaining technique allows retrieving, for each new
point, its best neighbors points into the embedded space,
just by scanning up or down the linked list. Thanks to a
few operations, considering the clustering properties of the
space-filling curves, we are then able to estimate the number
of occurrences of one temporal signature into the past of
the pixels envelope history and consequently to extract the
temporal correlated data.

3.2.2. Real time motion detection algorithm
The objective of our real time processing algorithm

(Fig. 8) is to provide a diagnosis based on the cumulative
motion estimation. At each sampling time, temporal signa-
tures of the lastN = 16 grey levels of each pixel are embed-
ded, indexed and chained into the linked list of the envelope.
Then we compare, during the clustering procedure, each new
embedded point with the� points in its immediate neigh-
borhood into the list. The number� of the comparisons de-
pends on the calculation time available for the process. As
this calculation time depends on the number of pixels that
are embedded at each sampling time,� varies in inverse
proportion to the number of pixels of the envelope. Mini-
mum�min and maximum�max are used to keep� within
reasonable values. We calculate then the histogram of the
instantaneous velocities (IVH) of the� couples of points in
the neighborhood points of the list with the new embedded
one (�/2 before this point,�/2 after this point). Knowing
the space and time coordinates of all points, the quotient of
their differences with the new embedded point coordinates
is calculated and added to the IVH. ISD is the instantaneous
standard deviation of the histogram IVH.
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Fig. 8. Real time detection algorithm using the 4 steps: Temporal embedding, fractal ordering, linking points and motion clustering.

Fig. 9. Instantaneous velocity histograms (IVH) for on point neighborhood and cumulative velocity histograms (CVH) for all the point neighborhoods.

Fig. 9 shows representative results calculated for the
envelopes of a cloud, a smoke and a wind tossed tree, the
smoke being at a distance of 4 km. We notice no significant
results in the case of the tree and in contrast a very well
defined peak for the cloud example.

When examining various types of smoke results, we al-
ways observe a spreading histogram with a certain variabil-
ity of the standard deviation, but that always keeps above that
of the cloud. Conversely, we consider that there is no motion

detected if the value of the instantaneous standard deviation

ISD is above a certain threshold IMD. This parameter is in-

cluded in the initialization file of the system. If any motion

is detected, the velocity of the maximum of IVH,Vmax is

then incremented into a cumulative velocity histogram CVH.

CSD is the standard deviation of CVH. CVH is at last used

to calculate criteria in order to distinguish smoke from other

phenomena.
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In the case of smoke and clouds, we observe that CVH
(Fig. 9(a), (b)) has the same shape as IVH, but is smoother
and the standard deviation CSD is stable. When CSD is
less than a minimum standard deviation CMD, we invalidate
smoke detection for this sampling time (Fig. 8). The use of
the CMD test poses a problem only in the rare case when
certain smoke envelopes are stretched by a very stable wind,
so that their velocity distribution resembles that of a cloud.
However, that cannot last, and the only consequence is that
the smoke detection time is increased. When wind speed is
zero, the motions in the case of smoke are induced by the
thermal convection. These motions are still detected by our
method, but are slower than those obtained during important
wind conditions. The result of this is also to increase the
detection time.

In the case of wind tossed trees (Fig. 9(c)) and many
other phenomena, the cumulative histogram is most often
rather poor in data, because motions are detected in the
case of point like situations and for precise pixels only.
A second criterion is then the minimum average energy ME
of the cumulative histogram per embedded point, which is
in other words the average number of instantaneous motion
diagnosis per embedded point. This criterion is the most
selective one, as it separates smoke from a lot of various
pseudo-dynamic envelopes that are not eliminated by the
envelope extraction pre-processing.

In addition to CMD and ME, other criteria are used, for
example, those based on the shape and on the smoothness
of the cumulative histogram; but they are more questionable
and have less generality. Among the other criteria is the
sense of propagation (top or bottom) that we calculate from
the angular distribution analysis.

One of the main interests of this temporal embedding
algorithm is that it is sensitive enough to detect local motions
by means of only a few pixels. So it is particularly adapted
to the analysis of small dynamic deformable objects with
multiple transitory motion paths, such as little envelopes of
smoke. The different processing steps described in this part
lead first to a local motion diagnosis at the level of one pixel,
and second to a global motion diagnosis at the level of the
whole envelope. These diagnoses are used for a complete
smoke identification and are actually implemented into the
fire forest detector ARTIS FIRE, commercialized by T2M
Automation.1 Validation campaigns permitted to estimate an
average smoke detection time below 3 minutes following the
first visible smoke emissions.

4. Conclusion

We have experienced that the more efficient data for
smoke identification is the velocity distribution of smoke
plumes, whose energy is higher than the energy of many

1 Aérospatiale-Matra, Tests et Services T2M, Zone d’Activités Louis
Bréguet, BP 6–Bâtiment T2, 78141 Vélizy-Villacoublay cedex, France.

other landscape phenomena, except clouds. However, in the
case of clouds, the standard deviation of velocity distribution
is generally lower than that of the smoke. Then our main
criterion for smoke detection is based on the analysis of
velocity distribution, using a minimum energy threshold and
a minimum standard deviation threshold. We have shown
that our method is able to provide a direct access to the useful
correlated data when a fast process is needed. The “fractal
embedding” method does not use any model or parameter
introduced a priori in the calculation for the extraction of
a result. For example, no threshold is used to quantify
any correlation between two short temporal segments. One
should be especially aware that the definite advantage of
fractal chaining and clustering is to considerably reduce
computing time. This is of paramount importance when
processing large amount of data, such as image sequences,
in particular in the case of real time computing.
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